NEW SCHEME

	i	1					 ····	
	i			1	1 1			
USN		1.		ľ				i
		<u> </u>	<u> </u>		i			no 2000-00

Third Semester B.E. Degree Examination, July/August 2004

EC/TE/EE/ML/BM/IT/CS/IS

Electronic Circuits

Time: 3 hrs.]

[Max.Marks: 100

Note: 1) Answer any FIVE questions.

2) All questions carry equal marks.

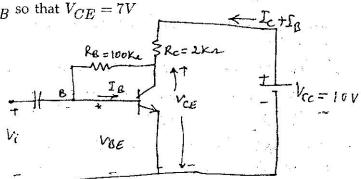
- (a) What is the origin of diffusion capacitance. Obtain an expression for the diffusion capacitance in terms of current in a P-n diode.
 - (b) Draw a double diode clipper which limits at two independent levels and explain its working.

 (8 Marks)
 - (c) Draw a simple clamping circuit and explain its working.

(6 Marks)

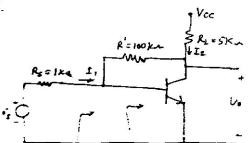
2. (a) Define the terms P.I.V and regulation as applied to rectifiers.

(4 Marks)


(b) For a self bias circuit, derive an expression for the stability factor S.

(8 Marks)

- (c) For the circuit shown in Fig. 2(c) calculate
 - i) $I_B,\ I_C$ and V_{CE} if a silicon transistor is used with $\beta=50$


ii) A value for R_B so that $V_{CE} = 7V$

(8 Marks)

- 3. (a) What are the advantages of using hybrid model to represent the transistor? Explain how the h-parameters can be obtained from the static characteristics of the transistor.

 (10 Marks)
 - (b) For the amplifier shown in Fig. 3(b), calculate R_i, R_i', A_V, A_{Vs} and $A_I' = -\frac{I_2}{I_1}$. The transistor parameters are $hie=1.1k\Omega,\ hre=2.5\times 10^{-4},\ h_{fe}=50$ and $h_{oe}=25\mu A/V$.

Marks)

Marks)

Marks) Marks)

t will

hat is back?

Marks)

ins of iency Marks)

nonic

ermer les to Marks)

I Marks)

Marks)
Vand

n type 7 Marks)

5 Marks)

seplain Marks)

- 4. (a) Draw hybrid- π model for C.E transistor and explain the significance of each component in the model.
 - (b) Derive expressions for transistor input conductance $g_{b'e}$ and feed back conductance $g_{b'e}$ (8 Marks)
 - (c) How are amplifiers classified? Discuss them briefly. (6 Marks)
- 5. (a) Draw a feedback amplifier in block diagram form. Identify each block and explain its function. (8 Marks)
 - (b) Derive an expression for the input resistance of a voltage series feedback topology.

 (5 Marks)
 - (c) If an amplifier has a bandwidth of 200kHz and a voltage gain of 100, what will be the new band width and gain if 5% negative feedback is introduced? What would be the amount of feedback if the bandwidth is restricted to 1 MHz?(7 Marks)
- 6. (a) Non linear distortion results in the generation of frequencies in the output that are not present in the input. If the dynamic curve can be represented by the equation $i_{c}=G_{1}ib+G_{2}i_{b}^{2}$ and if the input signal is given by $i_{b}=(I_{1}cos\omega_{1}t+I_{2}cos\omega_{2}t)$. Show that the output will contain a D.C. term and sinusoidal terms of frequency $\omega_{1},\omega_{2},2\omega_{1},2\omega_{2},(\omega_{1}+\omega_{2})$ and $(\omega_{1}-\omega_{2})$.
 - (b) Show that even harmonics are absent in the output of a push pull amplifier. (6 Marks)
 - c) A transistor supplies 0.85 w to a $4k\Omega$ load. The zero signal D.C. collector current is 31mA and the D.C. collector current with signal is 34 mA. Determine the second harmonic distortion. (4 Marks)
- (a) Draw the circuit and explain how to measure the differential input resistance of an op. Amp.
 - (b) Explain the working of a first order low-pass butter worth filter. (5 Marks)
 - (c) Design an op Amp Schmitt trigger circuit to meet the following specifications. $V_{UTP}=7V, \quad V_{LTP}=3V, \quad V_a=\pm 15V.$ (8 Marks)
- 8. (a) With a neat block diagram, explain the working of a successive approximation type of ADC circuit. (3+5=8 Marks)
 - (b) With the help of neat diagram and relevant wave forms explain the working of manostable multivibrator circuit using 555 timer.

 (8 Marks)
 - (c) Design a monostable multivibrator using 555 timer to obtain a pulse of width 1msec. (4 Marks)